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Homework 6 Solutions
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√

2
2L

sin(nπx
2L

). For t < 0 the system is in

the state ψ1(x). Since the well increases in size suddenly at t=0, the sudden
approximation tells us that the system is still in the state ψ1(x) just after
t=0. That is, at t = 0 the wavefunction is:

|ψ1 > =
∑
n

|φn >< φn|ψ1 > (using the completeness relation)

Therefore the probability of the system being found in the eigenstate |φn >
is | < φn|ψ1 > |2.
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If n is even and n 6= 2 then this is zero. If n = 2 then this equals 1√
2
. If

n = 2k + 1 then:

< φn|ψ1 > =

√
2

π

(
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2
)

(2k − 1)
−

sin( (2k+3)π
2

)

(2k + 3)

)

=
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(
(−1)k+1
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− (−1)k+1
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=

√
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4

(n2 − 4)

So the probabilities are:

Pn =
1

2
δn2 (for n even)

Pn =
32

π2(n2 − 4)2
(for n odd)

2. The potential is V = K(a1 + a†1 − a2 − a
†
2)

2 where K =
λh̄

2mω
.

(a) The eigenstates of the unperturbed system must be symmetric under
interchange of the bosons. Therefore the ground state is |00 > and
the first excited state is 1√

2
(|01 > +|10 >). So the first order energy

corrections are:

E
(1)
0 = < 00|V |00 >

= K(< 10|− < 01|)(|10 > −|01 >)

= 2K

E
(1)
1 =

1√
2

(< 01|+ < 10|)V 1√
2

(|01 > +|10 >)

=
K

2
(
√

2 < 20| −
√

2 < 02|)(
√

2|20 > −
√

2|02 >)

= 2K

So, to first order in perturbation theory, the ground state has energy
h̄ω + 2K, while the first excited has energy 2h̄ω + 2K.

(b) The eigenstates of the unperturbed system must now be antisymmetric
under interchange of the fermions. The the ground state is
1√
2
|00 > (| ↑↓> −| ↓↑>). The first excited state has degeneracy 4 and

has basis 1
2
(|01 > +|10 >)(| ↑↓> −| ↓↑>), and 1√

2
(|01 > +|10 >)|φ >,
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where |φ >= | ↑↑>, | ↓↓> or 1√
2
(| ↑↓> +| ↓↑>). These four states all

have different eigenvalues under the symmetry operators S or Sz and
therefore this is a good basis for the perturbation V. Therefore, we can
apply non-degenerate perturbation theory to this degenerate subspace.
Thus the first order energy corrections are (note: the spin part of the
wavefunction never contributes since V does not contain spin terms):

E
(1)
0 = < 00|V |00 >

= K(< 10|− < 01|)(|10 > −|01 >)

= 2K

E
(1)
1 =

1√
2

(< 10|+ < 01|)V 1√
2

(|10 > +|01 >)

=
K

2
(
√

2 < 20| −
√

2 < 02|)(
√

2|20 > −
√

2|02 >)

= 2K

Ẽ
(1)
1 =

1√
2

(< 10|− < 01|)V 1√
2

(|10 > −|01 >)

=
K

2
(
√

2 < 20|+
√

2 < 02|+ 2 < 00| − 2 < 11|) ·

(
√

2|20 > +
√

2|02 > +2|00 > −2|11 >)

= 6K

So, to first order in perturbation theory, the ground state has energy
h̄ω+2K. The four first excited states get split by the perturbation, with
one state having energy 2h̄ω + 2K and the other three states having
energy 2h̄ω + 6K.

3. Sodium has electron configuration 1s22s22p63s1. The outer shell has just one
electron in it, which therefore determines the spin and angular momentum
of the whole atom. That is, L = 0 and S = 1/2 (since the lone electron is
in the s (L = 0) level and has spin 1/2. Therefore J = 1/2 also. So the only
possible angular momentum state for sodium is 2S1/2. Since there is only
one possible state, Hund’s rules are trivially satisfied.

Magnesium has electron configuration 1s22s22p63s2. Since the outer shell of
magnesium is filled, the only possible state consistent with Pauli exclusion
is S = L = J = 0, that is, 1S0. Once again, since there is only one possible
state, Hund’s rules are trivially satisfied.

Aluminium has electron configuration 1s22s22p63s23p1. The one outer p
electron determines the spin and angular momentum to be L = 1, S = 1/2.
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Therefore J can be either 1/2 or 3/2. So energy levels are 2P1/2,
2P3/2.

Hund’s third rule then tells us that the lowest energy level of these two is
2P1/2, which is also what is found experimentally.

4. Please see the excerpt from the lecture notes by E. Commins attached to the
end of this document for details about calculating the possible total angular
momentum.

(a) Boron has configuration 1s22s22p1. Carbon has configuration 1s22s22p2.
Nitrogen has configuration 1s22s22p3.

(b) Boron has 1 p electron in the outer shell, so Boron must have L=1,
S=1/2. Therefore the total angular momentum can be either J = 3/2
or J = 1/2. So the possible states are 2P1/2 or 2P3/2.

Carbon has 2 p electrons, and they must be in an antisymmetric state
because they are identical fermions. Both electrons have orbital angular
momentum l = 1. When we add the orbital angular momentum of the
two electrons, we obtain L = 0, 1 or 2. The L = 2 state is symmetric,
the L = 1 state is antisymmetric and the L = 0 state is symmetric.
Both electrons have spin s = 1/2. When we add these two spins we ob-
tain S = 0 or 1. S=1 is a symmetric state and S=0 is an antisymmetric
state. We require the total wavefunction to be symmetric, so the only
possible states are (L = 2, S = 0), (L = 1, S = 1) and (L = 0, S = 0),
that is, 1D,3 P and 1S. Using the angular momentum addition of L
and S we can then find the possible values of J. The possible states are
1D2,

3 P0,
3 P1,

3 P2 or 1S0.

Nitrogen has 3 p electrons and so the possible states are 2D,2 P,4 S
(see lecture notes at the end of this document). Calculating the corre-
sponding J values then leads to the following possible states:
2D5/2,

2D3/2,
2 P3/2,

2 P1/2, or 4S3/2.

(c) Applying Hund’s rules to the possible states found above, we predict
that the ground state of Boron is 2P1/2, the ground state of Carbon
is 3P0 and the ground state of Nitrogen is 4S3/2. This agrees with
experiment.
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the Hamiltonian, it gives rise to an effective spin-spin coupling from the Coulomb 

interaction, as we discussed in the previous chapter.  

To summarize, if we ignore the spin-orbit interaction, 

 

S = S
i

i

!  and L = L
i

i

!  separately 

commute with H, as does J. Therefore energy eigenstates simultaneously have definite 

values of J,L, and S. Our next task is to determine the possible values of J,L, and S for a 

given configuration, and establish reasons for energy ordering of states of given J,L,S. 

 

13.6 Theory of multiplets in the Russell-Saunders scheme 

 

In the central field approximation, the energy of an atom is determined solely by the 

configuration (assignment of 
 
n,!  values to individual orbitals). Thus there is in general a 

great deal of degeneracy in each configuration. To see this consider a given  !  shell 

which can contain up to 
 
N
0
= 2(2! +1)  electrons. Suppose that in fact it contains n0 < N0 

electrons. For example, if  ! = 1  ( p shell), N0=6. For carbon, we have 2 equivalent p 

electrons, so n0 = 2. For nitrogen, n0 = 3, for oxygen, n0 = 4, and so on. The first electron 

may be placed in any one of the N0 orbitals, the second in N0-1, the third in N0-2, and so 

forth. Therefore, a priori there are: 

 

  
N
0
!

N
0
! n

0( )!
 

 

possibilities. However, some of these are equivalent because the electrons are 

indistinguishable: we must divide by the number of ways the electrons can be permuted 

among themselves, which is n0!.  Thus the degeneracy is: 

 

  g =
N
0
!

n
0
! N

0
! n

0( )!
=

N
0

n
0

"
#$

%
&'

      (13.32) 

 

For example, 

 

  

g carbon( ) =        
6

2

!
"#

$
%&
= 15

g(nitrogen) =       
6

3

!
"#

$
%&
= 20

g(oxygen) =         
6

4

!
"#

$
%&
= 15

g iron( ) =            
10

6

!
"#

$
%&
= 210

g(gadolinum) =  
14

8

!
"#

$
%&
= 3003
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Thus in the central field approximation there are 15 degenerate states associated with the 

ground configuration of carbon, 210 in iron, etc. However, because of the electrostatic 

interaction the potential is not truly central and much of this degeneracy is lifted. Since 

L,S,J are still good quantum numbers, all states with given L,S,J remain degenerate (they 

form a term), but terms with distinct values of L,S,J in general have distinct energies. 

(The word multiplet is reserved for states with given L,S. Here, there can sometimes be 

several values of J. For example the ground multiplet of oxygen is 
3
P which consists of 

the terms J=2,1, and 0. ) We have already seen the simplest example in Chapter 12: in 

helium the 1s2s configuration has a degeneracy of 4, and it breaks up into two distinct 

terms: 

 

1
S

0
:    g = 1

3
S

1
:    g = 3

 

 

Let us now see how the Pauli principle determines which multiplets correspond to a given 

configuration. 

 

a) If an atom contains only closed shells (e.g. the rare gas atoms and the group II 

elements Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg) the Pauli principle requires a pairing off of 

spins and orbital angular momenta to give S=0, L=0. Thus we must have a 
1
S0 ground 

state. 

b) If there is one electron outside of closed shells, the total spin S (=1/2) and the total 

orbital angular momentum L are that of the valence electron. Thus we obtain the 

following ground states: 

 

  

H ,Li,Na,K ,Rb,Cs,Fr :  
2
S

1/2

                          Ag,Au :  
2
S

1/2

                      Ga, In,Tl :  
2
P

1/2

 

  

Note that for Ga,In, Tl we have written J=1/2 for the ground state. In fact we need some 

knowledge of the spin-orbit interaction to determine that J=1/2 has lower  energy than 

J=3/2. 

c) Atoms that lack just one electron to complete a shell (for example, the halogens 

which have 5 equivalent p electrons) may be treated as having one “hole”, and the total 

spin and orbital angular momentum are that of the hole. Thus the halogen ground states 

are 2P
3/2

; (once again J is determined from knowledge of the spin-orbit interaction). 

d) If there are two electrons in the outermost incomplete shell, we can employ the 

following theorem: the wave function describing these electrons, which must be anti-

symmetric with respect to exchange, can always be written as a product of a spatial part 

and a spin part. If the spatial part is symmetric, the spin part is anti-symmetric; and vice-

versa. The proof of this theorem is exactly the same as for the 1s2s configuration in 

helium (see Sec. 12.7) and we do not repeat it. The theorem may also be used if we have 

two equivalent holes in an incomplete shell. 
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For example, consider carbon, which has two equivalent p 
 
! = 1( )  electrons. Then, the 

possible values of S are 1 and 0, while the possible values of L are 2,1, and 0. Then, a 

priori we may form the multiplets: 3
D,

3
P,

3
S,
1
D,

1
P,

1
S . However, because of the 

symmetry properties of vector coupling coefficients, L=0,2 are symmetric spatial states, 

while L =1 is anti-symmetric. Also S=1 is a symmetric spin state, while S=0 is anti-

symmetric. Therefore the multiplets 
3
D, 

3
S, and 

1
P are excluded, and we are left with the 

multiplets: 

 

  3
P (9 states),  

1
D (5 states), 

1
S  (1 state)  

 

for a total of 15 states. The same remarks hold for oxygen, which has two equivalent 

 ! = 1holes. 

 

e) If there are more than 2 equivalent electrons, it is no longer possible to factor the 

wave function into space and spin parts with opposite exchange symmetry. However the 

multiplets can be enumerated in a systematic, if somewhat laborious way, by constructing 

a table. We illustrate with the example of 3 equivalent p electrons. The columns of the 

table (shown on the following page) are labeled: 

 

  
 
m
!1

,  m
!2

,  m
!3

,  m
s1

,  m
s2

,  m
s3

,  M
L
,  M

S
,  L,  and S  

 

We start by entering in the first row the maximum possible values of 
 
m
!i

, i =1,2,3. For 3 

equivalent p electrons this would be +1, +1, +1, yielding ML = 3. Now each of the msi can 

only be ±1/2 a priori.   However, since 
 
m
!1
= m

!2
= m

!3
, no two of the m

si
 can be the 

same. Therefore we cannot have a state with ML = 3. Hence we cannot form an L = 3 

multiplet; the largest possible value is L = 2. Accordingly we try to construct a state with 

ML = 2, (the next row in the table). As can be seen, this is possible provided that not all 

values of ms are the same; hence for this particular state we have MS=1/2. Therefore this 

line of the table corresponds to a 
2
D multiplet, which has altogether 10 distinct states. 

Since the total degeneracy of a p
3
 configuration is 20, we must identify 10 more states. In 

the next lines of the table we write out those configurations associated with ML = 1. It can 

be seen that there are two independent possibilities. One linear combination must 

correspond to the 
2
D, ML=1 state. The orthogonal combination must be the ML =1 

component of a new multiplet with MS=1/2, hence S = #. This is obviously 
2
P, and 

contains altogether 6 states. It remains to identify 4 of the 20 states. To this end we start 

to write out the lines of the table corresponding to ML=0. It can be seen that there is one 

state with MS=3/2. Since MS=3/2 did not occur in any of the previous lines, it must be 

associated with L=0, S=3/2 (a 
4
S3/2 multiplet with 4 states). We have now identified all 20 

states, and it is unnecessary to fill in any more lines of the table. To recapitulate, a p
3
 

configuration contains the multiplets 
2
D, 

2
P, and 

4
S.  
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Multiplet Table for p
3
 

 

 
 
m
!1

 
 
m
!2

 
 
m
!3

 ms1 ms2 ms3 ML MS L S 

 

 1 1 1     Impossible 

 

 1 1 0 + - + 2 # 2 # 

 

 1 1 -1 + - +   2 1/2 

      1 #  

 1 0 0 + - +   1 # 

 

 1 0 -1 + + + 0 3/2 0 3/2 

 

 

This method can be extended in a routine way to more complicated cases. 

Now that we have a procedure for constructing the possible multiplets of a given 

configuration, how are they to be ordered in energy? There are several rules, named after 

the German spectroscopist F. Hund, who worked in the early decades of the 20
th

 century 

and arrived at the rules empirically. 

 

Hund’s first rule: Terms with the highest spin multiplicity lie lowest in energy. 

This owes its origin to the same phenomenon that causes 3S
1
to lie lower than 1S

0
 in 

helium. Recall that the spatial wave function of the 2 electrons in 3S
1
 is anti-symmetric; 

thus the probability that both electrons are found in the same small region of space is 

vanishingly small. Hence the average value of the repulsive interaction 1/r12  is much 

smaller than for 1S
0
, where the spatial wave function is symmetric. More generally, given 

a many-electron configuration, a multiplet with large S has a more anti-symmetric spatial 

wave function than a multiplet with small S. 

 

Hund’s second rule: For multiplets of the same S, those with higher L lie lower in energy. 

For given spin, multiplets with larger L tend to have electrons further apart than those 

with smaller L. 

 

Several simple examples of these rules are provided by carbon, oxygen, and nitrogen. In 

carbon and oxygen, 
3
P lies lowest, followed by 

1
D and then 

1
S. In nitrogen, the ground 

multiplet is 
4
S, followed by 

2
D and then 

2
P.  

However, while Hund’s rules provide a very useful general guide, they are not always 

valid. Configuration mixing and other effects can alter the energy ordering of multiplets.  

 

13.7    Calculation of multiplet energies in the L-S coupling scheme 

 

Quantitative calculations of multiplet splittings are not trivial, even for relatively simple 

atoms. The basic approach is to start with the central field approximation, assume only a 

single configuration, and use first-order perturbation theory with the Slater sum rule. Let 
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